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LETTER TO THE EDITOR 

The critical exponent y for the three-dimensional Ising model 

D S Gaunt and M F Sykes 
Wheatstone Physics Laboratory, King’s College, University of London, Strand, London 
WC2R 2LS, UK 

Received 2 November 1978 

Abstract. Estimates for the critical exponent y for the initial susceptibility of the three- 
dimensional spin-: king model are summarised. There is a discrepancy between estimates 
based on high-temperature series expansions and those obtained using renormalisation 
group theory. High-temperature series estimates for y are reviewed and re-examined using 
some new data. It is tentatively concluded that a small discrepancy still appears to exist and 
that further work is needed to resolve it. 

The precise value of the critical exponent y for the initial susceptibility of the 
three-dimensional spin-; king model (with nearest-neighbour isotropic interactions) is 
of great theoretical significance. Of particular interest is the discrepancy that has 
emerged between estimates of y based on an analysis of high-temperature expansions 
for the susceptibility and those obtained using renormalisation group (RG) theory. It is 
this discrepancy that we review briefly in this letter. 

Explicitly the exponent y describes the divergence of the initial susceptibility x o  as 
the Curie temperature is approached from above: 

x o - ( T - T J Y ,  T+T,+. (1) 

Until quite recently the mosi successful way of estimating y was the method of exact 
series expansions (reviewed by Domb 1974) coupled with various extrapolation 
techniques (reviewed by Gaunt and Guttmann 1974). One of the earliest analyses of 
this kind appears to have been that of Domb and Sykes (1957) who initially suggested 
y = 1.250 for the simple cubic and face-centred cubic lattices, and y = 1.244 for the 
body-centred cubic lattice. Subsequently they made the conjecture that y = lt  for all 
three-dimensional lattices (Domb and Sykes 1961), and this proved to be an important 
influence in the formulation of the universality hypothesis (Kadanoff 1971, Griffiths 
1970). Over the years, as series were extended and extrapolation techniques refined, 
numerical evidence steadily accumulated supporting y = 1: with confidence limits of 
the order of As a typical estimate we quote from the well known review article of 
Fisher (1 967) 

y =  1*250*0*003. (2) 
A few years ago, Wilson (1971a, b) initiated the RG approach to critical phenomena. 

This has greatly increased our understanding of phase transitions and has, for example, 
put the universality hypothesis on a firm theoretical basis. Critical exponents have been 
calculated through the E = 4 - d expansion (Wilson and Fisher 1972), and more recently 
use has been made of perturbation series for the g 4 4  field theory directly in three 
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dimensions (Baker et a1 1976). Using PadC-Bore1 summation techniques they obtained 

y = 1.241 *0.002. (3) 

More extensive work (Baker er a1 1978), incorporating the known asymptotic 
behaviour of the coefficients in the perturbation series (BrCzin et a1 1977), gave the 
result 

y = 1.241 *0*004. (4) 

By making certain analyticity assumptions, these estimates have been further refined by 
Le Guillou and Zinn-Justin (1977) who give 

( 5 )  

The RG estimates (3) to (5) are definitely lower than the central high-temperature series 
estimate (2). The difference is only $40 but is too large to be explained away 
convincingly by the quoted confidence limits. Furthermore it would appear that y can 
now be measured experimentally to this degree of precision (Chang er a1 1976, Hocken 
and Moldover 1976). Clearly the resolution of this discrepancy is a matter of great 
theoretical and experimental importance. 

In an attempt to shed some light on this problem we have returned to take another 
close and, we hope, unbiased look at the series data. It should be noted that some 
extensive recent studies (for example those of Sykes et a1 1972) have been aimed 
primarily at providing estimates of other parameters (nctably critical temperatures and 
amplitudes) on the assumption that y is exactly 1:. The discrepancy with which we are 
concerned is probably too small to affect the outcome of such investigations 
significantly. We have now to re-examine the data with a new emphasis. 

The series are in the usual high-temperature variable U = tanh K and are published 
elsewhere through u N ,  where N = 15 for the face-centred cubic (FCC) and body-centred 
cubic (BCC) lattices (McKenzie 1975, Sykes et a1 1972) and N = 22 for the diamond (D) 
lattice (Gaunt and Sykes 1973). For the simple cubic lattice we have corrected an 
insignificant error in the last term ( N  = 17) given by Sykes er a1 (1972) and added two 
new coefficients giving 

,yO=l+ . . .+ 401225368086~”+1864308847838u’~  + 8 6 6 0 9 6 1 6 4 3 2 5 4 ~ ’ ~ + . . .  . 

(6 )  
We have taken elaborate precautions to ensure the accuracy of these coefficients, and 
details of the derivation will be published elsewhere. Some of the methods used are 
described by Sykes (1979) for the analogous problem to N = 17 for the four-dimen- 
sional simple hypercubic lattice. 

The analysis that we present below involves only minor refinements of the ‘classic’ 
ratio method used by Domb and Sykes (1957) in their pioneering study of this problem. 
However, rather than work with expansions in powers of U, we have preferred first to 
transform to a new variable x defined by 

(7 1 
where U: is a good estimate of the exact critical point at U = uc. We have used the 
estimates of uc given by Sykes er a1 (1972) and Gaunt and Sykes (1973). The 
transformation (7) maps the point U = -U,* to infinity, while the point U = U,* is a fixed 
point (as is the origin U = 0). This means that for the loose-packed lattices the 

y = 1,2402 f 0*0009. 

x = 2 u / ( l +  u / u :  ) 
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antiferromagnetic singularity at U = -uC = -U,* is mapped so far from the origin relative 
to the ferromagnetic singularity that it should not affect the extrapolations significantly. 

The exponent y may be obtained by extrapolating to n = 00 the successive estimates 

1 + n ( d w  - 1) (8) 
where kn = U , , / U , - ~  is the ratio of successive coefficients of the x expansion and 

= l / xc .  Since xc is not known exactly we avoid the necessity of using the estimate 
xc= U: by simply replacing p in (8) by an nth-order estimate CL: which is known to 
approach p as n +CO, namely 

g: = n p n - ( n - 1 ) ~ - 1  (9) 
corresponding to extrapolating successive ratios linearly against 1 / n .  Hence (8) 
becomes 

(10) 

from which we obtain our final estimates yn of y by linear extrapolation against l /n .  
The estimates are plotted against l / n  in figure 1. These estimates are ‘unbiased’ in the 
sense that they do not depend directly on an estimate of the critical point xc of the 
transformed series. It is true that we have used U: in calculating the transformed series 
,YO(X), but this was simply to reduce the effect of the antiferromagnetic singularity; this 
could have been achieved quite well with a much less accurate value of U:. In fact the 
estimates yn turn out to be very stable with respect to small changes in U,* ; for example 

* 1 +~(CL, /CL:  - 1) = Y n  

28 
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Figure 1. Successive estimates y. for y, versus l/n. Changes in the critical temperature 
used to transform from U to x do not affect this graph for any lattice if Au, is within quoted 
confidence limits. The arrows indicate the limit 1; (Domb and Sykes 1961) and the RG limit 
1.241 (Baker et a1 1978). 
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the uncertainties in uc quoted by Sykes etal(l972) and Gaunt and Sykes (1973) do not 
affect the last estimates of y until at least the sixth decimal place. 

An examination of figure 1 suggests that apart from the diamond lattice (which has 
probably not yet been taken quite far enough) the successive approximations are 
becoming relatively smooth and slowly varying (in this connection the large scale used 
for the vertical axis should be noted). The sequences are all in good accord with the 
view that they have a common limit; on this assumption an objective choice would seem 
to lie within the confidence limits of the estimate (1) which we have arrowed. 

The way our plots approach y could be affected by higher-order confluent 
singularities. We have tried to take these into account by fitting in various ways to the 
asymptotic behaviour indicated by RG theory, but so far without notable success. A 
very thorough analysis of x o ( v )  was performed along these lines by Camp and Van Dyke 
(1975) who concluded that the amplitudes of the leading corrections are either very 
small or vanish identically. Convergence could also be marred by the presence of 
non-confluent singularities; our transformation of variables should at least have 
reduced the effect of the antiferromagnetic singularity. 

We are impressed by the essential consistency of the results for all four lattices 
illustrated in figure 1 which seem to support the appealingly simple hypothesis that y is 
exactly 1:. Further expansion coefficients would evidently be of great interest, and we 
are currently investigating the possibility of obtaining some. Of course the evidence we 
have presented does not disprove the renormalisation group theory predictions; rather 
we would say it provides a stimulus for further research, since if y is close to 1.241 it 
remains to be explained why it is so difficult to detect this from series expansions. 

This work has been supported (in part) by a grant from the Science Research Council. 
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